Additive Fertigung von Sensoren

Annina Schopen,

Kunststoff unter Strom

Bisher war es nicht möglich, Sensoren und andere elektronische Geräte in einem einzigen Arbeitsgang additiv zu fertigen. Genau das ist nun aber einem Forschungsteam vom Fraunhofer IPA gelungen. Eine entscheidende Rolle spielen dabei leitfähige Kunststoffe.

Widerstandsmessung an einem thermoplastischen Elastomer mit Rußpartikeln: Je kleiner der Widerstand, desto mehr Anwendungsmöglichkeiten gibt es. © Fraunhofer IPA/Stefan Pfeffer

Im Forschungsprojekt „Elektronische Funktionsintegration in additiv gefertigte Bauteile“ ist es Wissenschaftler:innen vom Zentrum für Additive Produktion am Fraunhofer IPA gelungen, mit einem 3D-Drucker induktive Näherungssensoren in beliebiger Form herzustellen. Allerdings musste der Druckprozess immer wieder unterbrochen werden, um die Leiterbahnen im Gehäuse zu verlegen.

In der zweiten Projektphase hat das Forschungsteam um Stefan Pfeffer deshalb zusammen mit dem Kunststoffmaschinenhersteller Arburg untersucht, welche leitfähigen Kunststoffe anstelle von Silber oder Kupfer zum Einsatz kommen könnten. Die Forscher:innen experimentierten zu diesem Zweck mit verschiedenen thermoplastischen Elastomeren (TPE). Das sind flexible Kunststoffe, die sich unter Wärmeeinfluss verarbeiten lassen. Leitfähig sind TPE, wenn sie beispielsweise eine ausreichende Menge an Rußpartikeln enthalten. Zunächst fahndete das Forschungsteam nach demjenigen TPE mit dem geringsten elektrischen Widerstand. Denn je kleiner der Widerstand, desto mehr Anwendungsmöglichkeiten gibt es.

Die Frage, wie sich elektronische Bauteile am besten einbauen und mit der geruckten TPE-Leiterbahn kontaktieren lassen, ist nun geklärt. © Fraunhofer IPA/Stefan Pfeffer

Thermoplastisches Elastomer im Härtetest

Das ausgewählte Material unterzogen Pfeffer und sein Team anschließend einer ganzen Reihe von Materialtests: Sie setzten es Hitze und Kälte aus, um zu prüfen, wie sich der elektrische Widerstand verändert. Sie leiteten Strom mit immer höherer Spannung hindurch, bis die Leiterbahnen durchschmorten. Sie dehnten das TPE, um herauszufinden, bis zu welchem Punkt es in seine ursprüngliche Form zurückfindet und wie die Leitfähigkeit unter Zug allmählich abnimmt. Sie ließen das Material künstlich altern, um zu sehen, wie sich das auf die Leitfähigkeit auswirkt. Und sie setzten es auf einem Flachdach ein Jahr lang Wind und Wetter aus, um herauszufinden, wie das TPE verwittert und wie sich seine Eigenschaften währenddessen verändern.

Anzeige

Gegenstand der Forschung war außerdem die Frage, welche Einstellungen am Freeformer, dem industriellen additiven Fertigungssystem von Arburg, vorgenommen werden müssen, um den elektrischen Widerstand des Materials zu minimieren und ob die Druckrichtung (horizontal oder vertikal) einen Einfluss auf die Leitfähigkeit der gedruckten Bauteile hat.

Sensoren und Orthesen sind mögliche Einsatzfelder

LED-Demonstrator mit integrierter Leiterplatte, gedruckter TPE-Leiterbahn, kontaktierter LED und isolatorischem PBT-Gehäuse. © Fraunhofer IPA/Stefan Pfeffer

Um seinen Zweck erfüllen zu können, muss das leitfähige TPE während des Drucks in einen anderen thermoplastischen Kunststoff mit isolierenden Eigenschaften eingebettet werden. Die Crux dabei: Die beiden Kunststoffe müssen aneinanderhaften – im Idealfall lassen sie sich danach nicht mehr trennen –, dürfen beim Druckprozess aber nicht verschmieren. Denn in einem solchen Fall gibt es keine klare Trennung mehr zwischen leitfähigem und isolierendem Material. Ein Kurzschluss droht.

Geklärt hat das Forschungsteam um Pfeffer außerdem die Frage, wie sich elektronische Bauteile wie LEDs, Widerstände oder Mikrocontroller am besten einbauen und mit der gedruckten TPE-Leiterbahn kontaktieren lassen. Damit ist es nun möglich, das Gehäuse und die Elektronik, die es umschließt, in einem einzigen Arbeitsgang additiv zu fertigen.

„Leiterbahnen aus rußhaltigem TPE sind zwar kostengünstig in der Herstellung“, sagt Pfeffer, „allerdings werden sie gelötete Leiterbahnen wegen der insgesamt schlechteren Leitfähigkeit nicht ersetzen können.“ Anwendungsmöglichkeiten gebe es dennoch einige. Denkbar seien beispielsweise kapazitive Sensoren wie Touch-Schalter oder Füllstandmesser. Aber auch Heizmatten oder Orthesen, die an bestimmten Stellen am Körper Wärme abgeben, um die Heilung zu unterstützen, seien möglich. „Man könnte auch die Sauggreifer von Robotern mit Leiterbahnen aus TPE ausstatten und so den Materialverschleiß überwachen. Je höher der Widerstand, desto abgenutzter der Greifer.“

Anzeige

Das könnte Sie auch interessieren

Anzeige

Virtual reality

Der VR-Handschuh aus dem 3D-Drucker

Gemeinsam mit Experten der EPFL und der ETH Zürich forscht ein Team der Empa an der nächsten Generation eines VR-Handschuhs, mit dem virtuelle Welten im Metaverse greifbar werden. Der Handschuh soll auf den Benutzer maßgeschneidert sein und...

mehr...
Anzeige
Anzeige

Neuer Freeformer von Arburg

Bis zu sieben Mal schneller

Das Formnext-Highlight bei Arburg war der Freeformer 750-3X. Der Bauteilträger ist im Vergleich zum bisherigen Modell rund 2,5 Mal größer – bei gleichbleibenden Außenmaßen. Die Maschine kann mehrere Artikel in einem Arbeitsgang herstellen, zudem...

mehr...
Anzeige
Anzeige
Anzeige
Anzeige

Newsletter bestellen

Immer auf dem Laufenden mit dem Kunststoff Magazin Newsletter

Aktuelle Unternehmensnachrichten, Produktnews und Innovationen kostenfrei in Ihrer Mailbox.

AGB und Datenschutz gelesen und bestätigt.
Zur Startseite